National Cancer Institute Home at the National Institutes of Health |
Please wait while this form is being loaded....
The Applied Research Program Web site is no longer maintained. ARP's former staff have moved to the new Healthcare Delivery Research Program, the Behavioral Research Program, or the Epidemiology & Genomics Research Program, and the content from this Web site is being moved to one of those sites as appropriate. Please update your links and bookmarks!

Publication Abstract

Authors: Miglioretti DL, Heagerty PJ

Title: Marginal modeling of nonnested multilevel data using standard software.

Journal: Am J Epidemiol 165(4):453-63

Date: 2007 Feb 15

Abstract: Epidemiologic data are often clustered within multiple levels that may not be nested within each other. Generalized estimating equations are commonly used to adjust for correlation among observations within clusters when fitting regression models; however, standard software does not currently accommodate nonnested clusters. This paper introduces a simple generalized estimating equation strategy that uses available commercial or public software for the regression analysis of nonnested multilevel data. The authors describe how to obtain empirical standard error estimates for constructing valid confidence intervals and conducting statistical hypothesis tests. The method is evaluated using simulations and illustrated with an analysis of data from the Breast Cancer Surveillance Consortium that estimates the influence of woman, radiologist, and facility characteristics on the positive predictive value of screening mammography. Performance with a small number of clusters is discussed. Both the simulations and the example demonstrate the importance of accounting for the correlation within all levels of clustering for proper inference.

Last Modified: 03 Sep 2013