National Cancer Institute Home at the National Institutes of Health |
Please wait while this form is being loaded....
The Applied Research Program Web site is no longer maintained. ARP's former staff have moved to the new Healthcare Delivery Research Program, the Behavioral Research Program, or the Epidemiology & Genomics Research Program, and the content from this Web site is being moved to one of those sites as appropriate. Please update your links and bookmarks!

Publication Abstract

Authors: Rogers CJ, Berrigan D, Zaharoff DA, Hance KW, Patel AC, Perkins SN, Schlom J, Greiner JW, Hursting SD

Title: Energy restriction and exercise differentially enhance components of systemic and mucosal immunity in mice.

Journal: J Nutr 138(1):115-22

Date: 2008 Jan

Abstract: The prevalence of obesity, an established risk factor for several chronic diseases, including cancer, has risen dramatically over the past 4 decades. Dietary change and/or increased physical activity are the most commonly recommended lifestyle-based strategies for preventing or reversing obesity. One of several physiological systems that may be enhanced by dietary change and exercise is the immune system. In this study, we examined the effects of energy restriction (ER; 30% reduction relative to control energy intake) and/or exercise (EX; voluntary wheel running) on systemic and mucosal immune function. Female C57BL/6 mice were randomized into 4 treatment conditions: 1) controls consumed ad libitum (AL); 2) AL with access to running wheels (AL + EX); 3) 30% ER; and 4) 30% ER with access to running wheels (ER + EX). Both ER and EX reduced spleen weight and the number of splenic T and B lymphocytes (P < 0.05). ER enhanced natural killer (NK) cell function, but reduced concanavalin A (Con A)-induced T-cell proliferation (P < 0.05). In contrast, EX enhanced Con A-induced proliferation and cytokine production from Peyer's patch cells (P < 0.05). These data suggest that ER and EX enhance some, but not all, components of the immune system and are likely working via different biological mechanisms to regulate NK and T-cell function.

Last Modified: 03 Sep 2013